Math 3450 - Homework # 3 Well-Defined Operations

1. Show that the operation $\overline{a} \oplus \overline{b} = \overline{a}^2 + \overline{b}^2$ is a well-defined operation for \mathbb{Z}_n . Here \overline{a}^2 means $\overline{a} \cdot \overline{a}$. For example, in \mathbb{Z}_4 we have that

$$\overline{2} \oplus \overline{3} = \overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3} = \overline{4} + \overline{9} = \overline{1}.$$

- 2. Given two integers a and b, let $\min(a, b)$ denote the minimum (smaller) of a and b. Let n be an integer with $n \ge 2$. Is the operation $\overline{a} \oplus \overline{b} = \min(a, b)$ a well-defined operation on \mathbb{Z}_n ?
- 3. (a) Show that the operation $\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc}$ is not a well-defined operation on \mathbb{Q} .
 - (b) Is the operation well-defined on $\mathbb{Q} \{0\}$?
- 4. Is the operation $\overline{a} \oplus \overline{b} = \overline{a^b}$ a well-defined operation on \mathbb{Z}_n ?
- 5. (Constructing the rational numbers from the integers) Let $S = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if ad = bc. In the last homework you showed that this is an equivalence relation on S.
 - (a) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(ad+bc,bd)}$. Prove that \oplus is well-defined on the set of equivalence classes.
 - (b) Define the operation $(a, b) \odot (c, d) = (ac, bd)$. Prove that \odot is well-defined on the set of equivalence classes.
- (Constructing the integers from the natural numbers) Let S = N × N. Define the relation ~ on S where (a, b) ~ (c, d) if and only if a+d = b+c. In the last homework you showed that this is an equivalence relation on S.
 - (a) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.